1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628 | /*
* Copyright (C) 1987-2008 Sun Microsystems, Inc. All Rights Reserved.
* Copyright (C) 2008-2011 Robert Ancell.
*
* This program is free software: you can redistribute it and/or modify it under
* the terms of the GNU General Public License as published by the Free Software
* Foundation, either version 2 of the License, or (at your option) any later
* version. See http://www.gnu.org/copyleft/gpl.html the full text of the
* license.
*/
#include <stdlib.h>
#include <string.h>
#include <math.h>
#include <libintl.h>
#include "mp.h"
#include "mp-private.h"
static MPNumber pi;<--- Shadowed declaration
static gboolean have_pi = FALSE;
static int
mp_compare_mp_to_int(const MPNumber *x, int i)
{
MPNumber t;
mp_set_from_integer(i, &t);
return mp_compare_mp_to_mp(x, &t);
}
/* Convert x to radians */
void
convert_to_radians(const MPNumber *x, MPAngleUnit unit, MPNumber *z)
{
MPNumber t1, t2;
switch(unit) {
default:
case MP_RADIANS:
mp_set_from_mp(x, z);
break;
case MP_DEGREES:
mp_get_pi(&t1);
mp_multiply(x, &t1, &t2);
mp_divide_integer(&t2, 180, z);
break;
case MP_GRADIANS:
mp_get_pi(&t1);
mp_multiply(x, &t1, &t2);
mp_divide_integer(&t2, 200, z);
break;
}
}
void
mp_get_pi(MPNumber *z)
{
if (mp_is_zero(&pi)) {
mp_set_from_string("3.1415926535897932384626433832795028841971693993751058209749445923078164062862089986280348253421170679", 10, &pi);
have_pi = TRUE;
}
mp_set_from_mp(&pi, z);
}
void
convert_from_radians(const MPNumber *x, MPAngleUnit unit, MPNumber *z)
{
MPNumber t1, t2;
switch (unit) {
default:
case MP_RADIANS:
mp_set_from_mp(x, z);
break;
case MP_DEGREES:
mp_multiply_integer(x, 180, &t2);
mp_get_pi(&t1);
mp_divide(&t2, &t1, z);
break;
case MP_GRADIANS:
mp_multiply_integer(x, 200, &t2);
mp_get_pi(&t1);
mp_divide(&t2, &t1, z);
break;
}
}
/* z = sin(x) -1 >= x >= 1, do_sin = 1
* z = cos(x) -1 >= x >= 1, do_sin = 0
*/
static void
mpsin1(const MPNumber *x, MPNumber *z, int do_sin)
{
int i, b2;
MPNumber t1, t2;
/* sin(0) = 0, cos(0) = 1 */
if (mp_is_zero(x)) {
if (do_sin == 0)
mp_set_from_integer(1, z);
else
mp_set_from_integer(0, z);
return;
}
mp_multiply(x, x, &t2);
if (mp_compare_mp_to_int(&t2, 1) > 0) {
mperr("*** ABS(X) > 1 IN CALL TO MPSIN1 ***");
}
if (do_sin == 0) {
mp_set_from_integer(1, &t1);
mp_set_from_integer(0, z);
i = 1;
} else {
mp_set_from_mp(x, &t1);
mp_set_from_mp(&t1, z);
i = 2;
}
/* Taylor series */
/* POWER SERIES LOOP. REDUCE T IF POSSIBLE */
b2 = 2 * max(MP_BASE, 64);
do {
if (MP_T + t1.exponent <= 0)
break;
/* IF I*(I+1) IS NOT REPRESENTABLE AS AN INTEGER, THE FOLLOWING
* DIVISION BY I*(I+1) HAS TO BE SPLIT UP.
*/
mp_multiply(&t2, &t1, &t1);
if (i > b2) {
mp_divide_integer(&t1, -i, &t1);
mp_divide_integer(&t1, i + 1, &t1);
} else {
mp_divide_integer(&t1, -i * (i + 1), &t1);
}
mp_add(&t1, z, z);
i += 2;
} while (t1.sign != 0);
if (do_sin == 0)
mp_add_integer(z, 1, z);
}
static void
mp_sin_real(const MPNumber *x, MPAngleUnit unit, MPNumber *z)
{
int xs;
MPNumber x_radians;
/* sin(0) = 0 */
if (mp_is_zero(x)) {
mp_set_from_integer(0, z);
return;
}
convert_to_radians(x, unit, &x_radians);
xs = x_radians.sign;
mp_abs(&x_radians, &x_radians);
/* USE MPSIN1 IF ABS(X) <= 1 */
if (mp_compare_mp_to_int(&x_radians, 1) <= 0) {
mpsin1(&x_radians, z, 1);
}
/* FIND ABS(X) MODULO 2PI */
else {
mp_get_pi(z);
mp_divide_integer(z, 4, z);
mp_divide(&x_radians, z, &x_radians);
mp_divide_integer(&x_radians, 8, &x_radians);
mp_fractional_component(&x_radians, &x_radians);
/* SUBTRACT 1/2, SAVE SIGN AND TAKE ABS */
mp_add_fraction(&x_radians, -1, 2, &x_radians);
xs = -xs * x_radians.sign;
if (xs == 0) {
mp_set_from_integer(0, z);
return;
}
x_radians.sign = 1;
mp_multiply_integer(&x_radians, 4, &x_radians);
/* IF NOT LESS THAN 1, SUBTRACT FROM 2 */
if (x_radians.exponent > 0)
mp_add_integer(&x_radians, -2, &x_radians);
if (mp_is_zero(&x_radians)) {
mp_set_from_integer(0, z);
return;
}
x_radians.sign = 1;
mp_multiply_integer(&x_radians, 2, &x_radians);
/* NOW REDUCED TO FIRST QUADRANT, IF LESS THAN PI/4 USE
* POWER SERIES, ELSE COMPUTE COS OF COMPLEMENT
*/
if (x_radians.exponent > 0) {
mp_add_integer(&x_radians, -2, &x_radians);
mp_multiply(&x_radians, z, &x_radians);
mpsin1(&x_radians, z, 0);
} else {
mp_multiply(&x_radians, z, &x_radians);
mpsin1(&x_radians, z, 1);
}
}
z->sign = xs;
}
static void
mp_cos_real(const MPNumber *x, MPAngleUnit unit, MPNumber *z)
{
/* cos(0) = 1 */
if (mp_is_zero(x)) {
mp_set_from_integer(1, z);
return;
}
convert_to_radians(x, unit, z);
/* Use power series if |x| <= 1 */
mp_abs(z, z);
if (mp_compare_mp_to_int(z, 1) <= 0) {
mpsin1(z, z, 0);
} else {
MPNumber t;
/* cos(x) = sin(π/2 - |x|) */
mp_get_pi(&t);
mp_divide_integer(&t, 2, &t);
mp_subtract(&t, z, z);
mp_sin(z, MP_RADIANS, z);
}
}
void
mp_sin(const MPNumber *x, MPAngleUnit unit, MPNumber *z)
{
if (mp_is_complex(x)) {
MPNumber x_real, x_im, z_real, z_im, t;
mp_real_component(x, &x_real);
mp_imaginary_component(x, &x_im);
mp_sin_real(&x_real, unit, &z_real);
mp_cosh(&x_im, &t);
mp_multiply(&z_real, &t, &z_real);
mp_cos_real(&x_real, unit, &z_im);
mp_sinh(&x_im, &t);
mp_multiply(&z_im, &t, &z_im);
mp_set_from_complex(&z_real, &z_im, z);
}
else
mp_sin_real(x, unit, z);
}
void
mp_cos(const MPNumber *x, MPAngleUnit unit, MPNumber *z)
{
if (mp_is_complex(x)) {
MPNumber x_real, x_im, z_real, z_im, t;
mp_real_component(x, &x_real);
mp_imaginary_component(x, &x_im);
mp_cos_real(&x_real, unit, &z_real);
mp_cosh(&x_im, &t);
mp_multiply(&z_real, &t, &z_real);
mp_sin_real(&x_real, unit, &z_im);
mp_sinh(&x_im, &t);
mp_multiply(&z_im, &t, &z_im);
mp_invert_sign(&z_im, &z_im);
mp_set_from_complex(&z_real, &z_im, z);
}
else
mp_cos_real(x, unit, z);
}
void
mp_tan(const MPNumber *x, MPAngleUnit unit, MPNumber *z)
{
MPNumber cos_x, sin_x;
/* Check for undefined values */
mp_cos(x, unit, &cos_x);
if (mp_is_zero(&cos_x)) {
/* Translators: Error displayed when tangent value is undefined */
mperr(_("Tangent is undefined for angles that are multiples of π (180°) from π∕2 (90°)"));
mp_set_from_integer(0, z);
return;
}
/* tan(x) = sin(x) / cos(x) */
mp_sin(x, unit, &sin_x);
mp_divide(&sin_x, &cos_x, z);
}
void
mp_asin(const MPNumber *x, MPAngleUnit unit, MPNumber *z)
{
MPNumber t1, t2;
/* asin⁻¹(0) = 0 */
if (mp_is_zero(x)) {
mp_set_from_integer(0, z);
return;
}
/* sin⁻¹(x) = tan⁻¹(x / √(1 - x²)), |x| < 1 */
if (x->exponent <= 0) {
mp_set_from_integer(1, &t1);
mp_set_from_mp(&t1, &t2);
mp_subtract(&t1, x, &t1);
mp_add(&t2, x, &t2);
mp_multiply(&t1, &t2, &t2);
mp_root(&t2, -2, &t2);
mp_multiply(x, &t2, z);
mp_atan(z, unit, z);
return;
}
/* sin⁻¹(1) = π/2, sin⁻¹(-1) = -π/2 */
mp_set_from_integer(x->sign, &t2);
if (mp_is_equal(x, &t2)) {
mp_get_pi(z);
mp_divide_integer(z, 2 * t2.sign, z);
convert_from_radians(z, unit, z);
return;
}
/* Translators: Error displayed when inverse sine value is undefined */
mperr(_("Inverse sine is undefined for values outside [-1, 1]"));
mp_set_from_integer(0, z);
}
void
mp_acos(const MPNumber *x, MPAngleUnit unit, MPNumber *z)
{
MPNumber t1, t2;
MPNumber MPn1, pi, MPy;<--- Shadow variable
mp_get_pi(&pi);
mp_set_from_integer(1, &t1);
mp_set_from_integer(-1, &MPn1);
if (mp_is_greater_than(x, &t1) || mp_is_less_than(x, &MPn1)) {
/* Translators: Error displayed when inverse cosine value is undefined */
mperr(_("Inverse cosine is undefined for values outside [-1, 1]"));
mp_set_from_integer(0, z);
} else if (mp_is_zero(x)) {
mp_divide_integer(&pi, 2, z);
} else if (mp_is_equal(x, &t1)) {
mp_set_from_integer(0, z);
} else if (mp_is_equal(x, &MPn1)) {
mp_set_from_mp(&pi, z);
} else {
/* cos⁻¹(x) = tan⁻¹(√(1 - x²) / x) */
mp_multiply(x, x, &t2);
mp_subtract(&t1, &t2, &t2);
mp_sqrt(&t2, &t2);
mp_divide(&t2, x, &t2);
mp_atan(&t2, MP_RADIANS, &MPy);
if (x->sign > 0) {
mp_set_from_mp(&MPy, z);
} else {
mp_add(&MPy, &pi, z);
}
}
convert_from_radians(z, unit, z);
}
void
mp_atan(const MPNumber *x, MPAngleUnit unit, MPNumber *z)
{
int i, q;
float rx = 0.0;
MPNumber t1, t2;
if (mp_is_zero(x)) {
mp_set_from_integer(0, z);
return;
}
mp_set_from_mp(x, &t2);
if (abs(x->exponent) <= 2)
rx = mp_cast_to_float(x);
/* REDUCE ARGUMENT IF NECESSARY BEFORE USING SERIES */
q = 1;
while (t2.exponent >= 0)
{
if (t2.exponent == 0 && 2 * (t2.fraction[0] + 1) <= MP_BASE)
break;
q *= 2;
/* t = t / (√(t² + 1) + 1) */
mp_multiply(&t2, &t2, z);
mp_add_integer(z, 1, z);
mp_sqrt(z, z);
mp_add_integer(z, 1, z);
mp_divide(&t2, z, &t2);
}
/* USE POWER SERIES NOW ARGUMENT IN (-0.5, 0.5) */
mp_set_from_mp(&t2, z);
mp_multiply(&t2, &t2, &t1);
/* SERIES LOOP. REDUCE T IF POSSIBLE. */
for (i = 1; ; i += 2) {
if (MP_T + 2 + t2.exponent <= 1)
break;
mp_multiply(&t2, &t1, &t2);
mp_multiply_fraction(&t2, -i, i + 2, &t2);
mp_add(z, &t2, z);
if (mp_is_zero(&t2))
break;
}
/* CORRECT FOR ARGUMENT REDUCTION */
mp_multiply_integer(z, q, z);
/* CHECK THAT RELATIVE ERROR LESS THAN 0.01 UNLESS EXPONENT
* OF X IS LARGE (WHEN ATAN MIGHT NOT WORK)
*/
if (abs(x->exponent) <= 2) {
float ry = mp_cast_to_float(z);
/* THE FOLLOWING MESSAGE MAY INDICATE THAT B**(T-1) IS TOO SMALL. */
if (fabs(ry - atan(rx)) >= fabs(ry) * 0.01)
mperr("*** ERROR OCCURRED IN MP_ATAN, RESULT INCORRECT ***");
}
convert_from_radians(z, unit, z);
}
void
mp_sinh(const MPNumber *x, MPNumber *z)
{
MPNumber abs_x;
/* sinh(0) = 0 */
if (mp_is_zero(x)) {
mp_set_from_integer(0, z);
return;
}
/* WORK WITH ABS(X) */
mp_abs(x, &abs_x);
/* If |x| < 1 USE MPEXP TO AVOID CANCELLATION, otherwise IF TOO LARGE MP_EPOWY GIVES ERROR MESSAGE */
if (abs_x.exponent <= 0) {
MPNumber exp_x, a, b;
/* ((e^|x| + 1) * (e^|x| - 1)) / e^|x| */
// FIXME: Solves to e^|x| - e^-|x|, why not lower branch always? */
mp_epowy(&abs_x, &exp_x);
mp_add_integer(&exp_x, 1, &a);
mp_add_integer(&exp_x, -1, &b);
mp_multiply(&a, &b, z);
mp_divide(z, &exp_x, z);
}
else {
MPNumber exp_x;
/* e^|x| - e^-|x| */
mp_epowy(&abs_x, &exp_x);
mp_reciprocal(&exp_x, z);
mp_subtract(&exp_x, z, z);
}
/* DIVIDE BY TWO AND RESTORE SIGN */
mp_divide_integer(z, 2, z);
mp_multiply_integer(z, x->sign, z);
}
void
mp_cosh(const MPNumber *x, MPNumber *z)
{
MPNumber t;
/* cosh(0) = 1 */
if (mp_is_zero(x)) {
mp_set_from_integer(1, z);
return;
}
/* cosh(x) = (e^x + e^-x) / 2 */
mp_abs(x, &t);
mp_epowy(&t, &t);
mp_reciprocal(&t, z);
mp_add(&t, z, z);
mp_divide_integer(z, 2, z);
}
void
mp_tanh(const MPNumber *x, MPNumber *z)
{
float r__1;
MPNumber t;
/* tanh(0) = 0 */
if (mp_is_zero(x)) {
mp_set_from_integer(0, z);
return;
}
mp_abs(x, &t);
/* SEE IF ABS(X) SO LARGE THAT RESULT IS +-1 */
r__1 = (float) MP_T * 0.5 * log((float) MP_BASE);
mp_set_from_float(r__1, z);
if (mp_compare_mp_to_mp(&t, z) > 0) {
mp_set_from_integer(x->sign, z);
return;
}
/* If |x| >= 1/2 use ?, otherwise use ? to avoid cancellation */
/* |tanh(x)| = (e^|2x| - 1) / (e^|2x| + 1) */
mp_multiply_integer(&t, 2, &t);
if (t.exponent > 0) {
mp_epowy(&t, &t);
mp_add_integer(&t, -1, z);
mp_add_integer(&t, 1, &t);
mp_divide(z, &t, z);
} else {
mp_epowy(&t, &t);
mp_add_integer(&t, 1, z);
mp_add_integer(&t, -1, &t);
mp_divide(&t, z, z);
}
/* Restore sign */
z->sign = x->sign * z->sign;
}
void
mp_asinh(const MPNumber *x, MPNumber *z)
{
MPNumber t;
/* sinh⁻¹(x) = ln(x + √(x² + 1)) */
mp_multiply(x, x, &t);
mp_add_integer(&t, 1, &t);
mp_sqrt(&t, &t);
mp_add(x, &t, &t);
mp_ln(&t, z);
}
void
mp_acosh(const MPNumber *x, MPNumber *z)
{
MPNumber t;
/* Check x >= 1 */
mp_set_from_integer(1, &t);
if (mp_is_less_than(x, &t)) {
/* Translators: Error displayed when inverse hyperbolic cosine value is undefined */
mperr(_("Inverse hyperbolic cosine is undefined for values less than one"));
mp_set_from_integer(0, z);
return;
}
/* cosh⁻¹(x) = ln(x + √(x² - 1)) */
mp_multiply(x, x, &t);
mp_add_integer(&t, -1, &t);
mp_sqrt(&t, &t);
mp_add(x, &t, &t);
mp_ln(&t, z);
}
void
mp_atanh(const MPNumber *x, MPNumber *z)
{
MPNumber one, minus_one, n, d;
/* Check -1 <= x <= 1 */
mp_set_from_integer(1, &one);
mp_set_from_integer(-1, &minus_one);
if (mp_is_greater_equal(x, &one) || mp_is_less_equal(x, &minus_one)) {
/* Translators: Error displayed when inverse hyperbolic tangent value is undefined */
mperr(_("Inverse hyperbolic tangent is undefined for values outside [-1, 1]"));
mp_set_from_integer(0, z);
return;
}
/* atanh(x) = 0.5 * ln((1 + x) / (1 - x)) */
mp_add_integer(x, 1, &n);
mp_set_from_mp(x, &d);
mp_invert_sign(&d, &d);
mp_add_integer(&d, 1, &d);
mp_divide(&n, &d, z);
mp_ln(z, z);
mp_divide_integer(z, 2, z);
}
|