1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096 | /*
* Copyright (C) 1987-2008 Sun Microsystems, Inc. All Rights Reserved.
* Copyright (C) 2008-2011 Robert Ancell
*
* This program is free software: you can redistribute it and/or modify it under
* the terms of the GNU General Public License as published by the Free Software
* Foundation, either version 2 of the License, or (at your option) any later
* version. See http://www.gnu.org/copyleft/gpl.html the full text of the
* license.
*/
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include <errno.h>
#include "mp.h"
#include "mp-private.h"
static MPNumber eulers_number;
static gboolean have_eulers_number = FALSE;
// FIXME: Re-add overflow and underflow detection
char *mp_error = NULL;
/* THIS ROUTINE IS CALLED WHEN AN ERROR CONDITION IS ENCOUNTERED, AND
* AFTER A MESSAGE HAS BEEN WRITTEN TO STDERR.
*/
void
mperr(const char *format, ...)
{
char text[1024];
va_list args;
va_start(args, format);
vsnprintf(text, 1024, format, args);
va_end(args);
if (mp_error)
free(mp_error);
mp_error = strdup(text);
}
const char *
mp_get_error()
{
return mp_error;
}
void mp_clear_error()
{
if (mp_error)
free(mp_error);
mp_error = NULL;
}
/* ROUTINE CALLED BY MP_DIVIDE AND MP_SQRT TO ENSURE THAT
* RESULTS ARE REPRESENTED EXACTLY IN T-2 DIGITS IF THEY
* CAN BE. X IS AN MP NUMBER, I AND J ARE INTEGERS.
*/
static void
mp_ext(int i, int j, MPNumber *x)
{
int q, s;
if (mp_is_zero(x) || MP_T <= 2 || i == 0)
return;
/* COMPUTE MAXIMUM POSSIBLE ERROR IN THE LAST PLACE */
q = (j + 1) / i + 1;
s = MP_BASE * x->fraction[MP_T - 2] + x->fraction[MP_T - 1];
/* SET LAST TWO DIGITS TO ZERO */
if (s <= q) {
x->fraction[MP_T - 2] = 0;
x->fraction[MP_T - 1] = 0;
return;
}
if (s + q < MP_BASE * MP_BASE)
return;
/* ROUND UP HERE */
x->fraction[MP_T - 2] = MP_BASE - 1;
x->fraction[MP_T - 1] = MP_BASE;
/* NORMALIZE X (LAST DIGIT B IS OK IN MP_MULTIPLY_INTEGER) */
mp_multiply_integer(x, 1, x);
}
void
mp_get_eulers(MPNumber *z)
{
if (!have_eulers_number) {
MPNumber t;
mp_set_from_integer(1, &t);
mp_epowy(&t, &eulers_number);
have_eulers_number = TRUE;
}
mp_set_from_mp(&eulers_number, z);
}
void
mp_get_i(MPNumber *z)
{
mp_set_from_integer(0, z);
z->im_sign = 1;
z->im_exponent = 1;
z->im_fraction[0] = 1;
}
void
mp_abs(const MPNumber *x, MPNumber *z)
{
if (mp_is_complex(x)){
MPNumber x_real, x_im;
mp_real_component(x, &x_real);
mp_imaginary_component(x, &x_im);
mp_multiply(&x_real, &x_real, &x_real);
mp_multiply(&x_im, &x_im, &x_im);
mp_add(&x_real, &x_im, z);
mp_root(z, 2, z);
}
else {
mp_set_from_mp(x, z);
if (z->sign < 0)
z->sign = -z->sign;
}
}
void
mp_arg(const MPNumber *x, MPAngleUnit unit, MPNumber *z)
{
MPNumber x_real, x_im, pi;
if (mp_is_zero(x)) {
/* Translators: Error display when attempting to take argument of zero */
mperr(_("Argument not defined for zero"));
mp_set_from_integer(0, z);
return;
}
mp_real_component(x, &x_real);
mp_imaginary_component(x, &x_im);
mp_get_pi(&pi);
if (mp_is_zero(&x_im)) {
if (mp_is_negative(&x_real))
convert_from_radians(&pi, MP_RADIANS, z);
else
mp_set_from_integer(0, z);
}
else if (mp_is_zero(&x_real)) {
mp_set_from_mp(&pi, z);
if (mp_is_negative(&x_im))
mp_divide_integer(z, -2, z);
else
mp_divide_integer(z, 2, z);
}
else if (mp_is_negative(&x_real)) {
mp_divide(&x_im, &x_real, z);
mp_atan(z, MP_RADIANS, z);
if (mp_is_negative(&x_im))
mp_subtract(z, &pi, z);
else
mp_add(z, &pi, z);
}
else {
mp_divide(&x_im, &x_real, z);
mp_atan(z, MP_RADIANS, z);
}
convert_from_radians(z, unit, z);
}
void
mp_conjugate(const MPNumber *x, MPNumber *z)
{
mp_set_from_mp(x, z);
z->im_sign = -z->im_sign;
}
void
mp_real_component(const MPNumber *x, MPNumber *z)
{
mp_set_from_mp(x, z);
/* Clear imaginary component */
z->im_sign = 0;
z->im_exponent = 0;
memset(z->im_fraction, 0, sizeof(int) * MP_SIZE);
}
void
mp_imaginary_component(const MPNumber *x, MPNumber *z)
{
/* Copy imaginary component to real component */
z->sign = x->im_sign;
z->exponent = x->im_exponent;
memcpy(z->fraction, x->im_fraction, sizeof(int) * MP_SIZE);
/* Clear (old) imaginary component */
z->im_sign = 0;
z->im_exponent = 0;
memset(z->im_fraction, 0, sizeof(int) * MP_SIZE);
}
static void
mp_add_real(const MPNumber *x, int y_sign, const MPNumber *y, MPNumber *z)
{
int sign_prod, i, c;<--- Shadowed declaration
int exp_diff, med;
bool x_largest = false;
const int *big_fraction, *small_fraction;
MPNumber x_copy, y_copy;
/* 0 + y = y */
if (mp_is_zero(x)) {
mp_set_from_mp(y, z);
z->sign = y_sign;
return;
}
/* x + 0 = x */
else if (mp_is_zero(y)) {
mp_set_from_mp(x, z);
return;
}
sign_prod = y_sign * x->sign;
exp_diff = x->exponent - y->exponent;
med = abs(exp_diff);
if (exp_diff < 0) {
x_largest = false;
} else if (exp_diff > 0) {
x_largest = true;
} else {
/* EXPONENTS EQUAL SO COMPARE SIGNS, THEN FRACTIONS IF NEC. */
if (sign_prod < 0) {
/* Signs are not equal. find out which mantissa is larger. */
int j;
for (j = 0; j < MP_T; j++) {
int i = x->fraction[j] - y->fraction[j];<--- Shadow variable
if (i == 0)<--- Assuming that condition 'i==0' is not redundant
continue;
if (i < 0)
x_largest = false;
else if (i > 0)<--- Condition 'i>0' is always true
x_largest = true;
break;
}
/* Both mantissas equal, so result is zero. */
if (j >= MP_T) {
mp_set_from_integer(0, z);
return;
}
}
}
mp_set_from_mp(x, &x_copy);
mp_set_from_mp(y, &y_copy);
mp_set_from_integer(0, z);
if (x_largest) {
z->sign = x_copy.sign;
z->exponent = x_copy.exponent;
big_fraction = x_copy.fraction;
small_fraction = y_copy.fraction;
} else {
z->sign = y_sign;
z->exponent = y_copy.exponent;
big_fraction = y_copy.fraction;
small_fraction = x_copy.fraction;
}
/* CLEAR GUARD DIGITS TO RIGHT OF X DIGITS */
for(i = 3; i >= med; i--)
z->fraction[MP_T + i] = 0;
if (sign_prod >= 0) {
/* This is probably insufficient overflow detection, but it makes us
* not crash at least.
*/
if (MP_T + 3 < med) {
mperr(_("Overflow: the result couldn't be calculated"));
mp_set_from_integer(0, z);
return;
}
/* HERE DO ADDITION, EXPONENT(Y) >= EXPONENT(X) */
for (i = MP_T + 3; i >= MP_T; i--)
z->fraction[i] = small_fraction[i - med];
c = 0;
for (; i >= med; i--) {
c = big_fraction[i] + small_fraction[i - med] + c;
if (c < MP_BASE) {
/* NO CARRY GENERATED HERE */
z->fraction[i] = c;
c = 0;
} else {
/* CARRY GENERATED HERE */
z->fraction[i] = c - MP_BASE;
c = 1;
}
}
for (; i >= 0; i--)
{
c = big_fraction[i] + c;
if (c < MP_BASE) {
z->fraction[i] = c;
i--;
/* NO CARRY POSSIBLE HERE */
for (; i >= 0; i--)
z->fraction[i] = big_fraction[i];
c = 0;
break;
}
z->fraction[i] = 0;
c = 1;
}
/* MUST SHIFT RIGHT HERE AS CARRY OFF END */
if (c != 0) {
for (i = MP_T + 3; i > 0; i--)
z->fraction[i] = z->fraction[i - 1];
z->fraction[0] = 1;
z->exponent++;
}
}
else {
c = 0;
for (i = MP_T + med - 1; i >= MP_T; i--) {
/* HERE DO SUBTRACTION, ABS(Y) > ABS(X) */
z->fraction[i] = c - small_fraction[i - med];
c = 0;
/* BORROW GENERATED HERE */
if (z->fraction[i] < 0) {
c = -1;
z->fraction[i] += MP_BASE;
}
}
for(; i >= med; i--) {
c = big_fraction[i] + c - small_fraction[i - med];
if (c >= 0) {
/* NO BORROW GENERATED HERE */
z->fraction[i] = c;
c = 0;
} else {
/* BORROW GENERATED HERE */
z->fraction[i] = c + MP_BASE;
c = -1;
}
}
for (; i >= 0; i--) {
c = big_fraction[i] + c;
if (c >= 0) {
z->fraction[i] = c;
i--;
/* NO CARRY POSSIBLE HERE */
for (; i >= 0; i--)
z->fraction[i] = big_fraction[i];
break;
}
z->fraction[i] = c + MP_BASE;
c = -1;
}
}
mp_normalize(z);
}
static void
mp_add_with_sign(const MPNumber *x, int y_sign, const MPNumber *y, MPNumber *z)
{
if (mp_is_complex(x) || mp_is_complex(y)) {
MPNumber real_x, real_y, im_x, im_y, real_z, im_z;
mp_real_component(x, &real_x);
mp_imaginary_component(x, &im_x);
mp_real_component(y, &real_y);
mp_imaginary_component(y, &im_y);
mp_add_real(&real_x, y_sign * y->sign, &real_y, &real_z);
mp_add_real(&im_x, y_sign * y->im_sign, &im_y, &im_z);
mp_set_from_complex(&real_z, &im_z, z);
}
else
mp_add_real(x, y_sign * y->sign, y, z);
}
void
mp_add(const MPNumber *x, const MPNumber *y, MPNumber *z)
{
mp_add_with_sign(x, 1, y, z);
}
void
mp_add_integer(const MPNumber *x, int64_t y, MPNumber *z)
{
MPNumber t;
mp_set_from_integer(y, &t);
mp_add(x, &t, z);
}
void
mp_add_fraction(const MPNumber *x, int64_t i, int64_t j, MPNumber *y)
{
MPNumber t;
mp_set_from_fraction(i, j, &t);
mp_add(x, &t, y);
}
void
mp_subtract(const MPNumber *x, const MPNumber *y, MPNumber *z)
{
mp_add_with_sign(x, -1, y, z);
}
void
mp_sgn(const MPNumber *x, MPNumber *z)
{
if (mp_is_zero(x))
mp_set_from_integer(0, z);
else if (mp_is_negative(x))
mp_set_from_integer(-1, z);
else
mp_set_from_integer(1, z);
}
void
mp_integer_component(const MPNumber *x, MPNumber *z)
{
int i;
/* Clear fraction */
mp_set_from_mp(x, z);
for (i = z->exponent; i < MP_SIZE; i++)
z->fraction[i] = 0;
z->im_sign = 0;
z->im_exponent = 0;
memset(z->im_fraction, 0, sizeof(int) * MP_SIZE);
}
void
mp_fractional_component(const MPNumber *x, MPNumber *z)
{
int i, shift;
/* Fractional component of zero is 0 */
if (mp_is_zero(x)) {
mp_set_from_integer(0, z);
return;
}
/* All fractional */
if (x->exponent <= 0) {
mp_set_from_mp(x, z);
return;
}
/* Shift fractional component */
shift = x->exponent;
for (i = shift; i < MP_SIZE && x->fraction[i] == 0; i++)
shift++;
z->sign = x->sign;
z->exponent = x->exponent - shift;
for (i = 0; i < MP_SIZE; i++) {
if (i + shift >= MP_SIZE)
z->fraction[i] = 0;
else
z->fraction[i] = x->fraction[i + shift];
}
if (z->fraction[0] == 0)
z->sign = 0;
z->im_sign = 0;
z->im_exponent = 0;
memset(z->im_fraction, 0, sizeof(int) * MP_SIZE);
}
void
mp_fractional_part(const MPNumber *x, MPNumber *z)
{
MPNumber f;
mp_floor(x, &f);
mp_subtract(x, &f, z);
}
void
mp_floor(const MPNumber *x, MPNumber *z)
{
int i;
bool have_fraction = false, is_negative;
/* Integer component of zero = 0 */
if (mp_is_zero(x)) {
mp_set_from_mp(x, z);
return;
}
/* If all fractional then no integer component */
if (x->exponent <= 0) {
mp_set_from_integer(0, z);
return;
}
is_negative = mp_is_negative(x);
/* Clear fraction */
mp_set_from_mp(x, z);
for (i = z->exponent; i < MP_SIZE; i++) {
if (z->fraction[i])
have_fraction = true;
z->fraction[i] = 0;
}
z->im_sign = 0;
z->im_exponent = 0;
memset(z->im_fraction, 0, sizeof(int) * MP_SIZE);
if (have_fraction && is_negative)
mp_add_integer(z, -1, z);
}
void
mp_ceiling(const MPNumber *x, MPNumber *z)
{
MPNumber f;
mp_floor(x, z);
mp_fractional_component(x, &f);
if (mp_is_zero(&f))
return;
mp_add_integer(z, 1, z);
}
void
mp_round(const MPNumber *x, MPNumber *z)
{
MPNumber f, one;
bool do_floor;
do_floor = !mp_is_negative(x);
mp_fractional_component(x, &f);
mp_multiply_integer(&f, 2, &f);
mp_abs(&f, &f);
mp_set_from_integer(1, &one);
if (mp_is_greater_equal(&f, &one))
do_floor = !do_floor;
if (do_floor)
mp_floor(x, z);
else
mp_ceiling(x, z);
}
int
mp_compare_mp_to_mp(const MPNumber *x, const MPNumber *y)
{
int i;
if (x->sign != y->sign) {
if (x->sign > y->sign)
return 1;
else
return -1;
}
/* x = y = 0 */
if (mp_is_zero(x))
return 0;
/* See if numbers are of different magnitude */
if (x->exponent != y->exponent) {
if (x->exponent > y->exponent)
return x->sign;
else
return -x->sign;
}
/* Compare fractions */
for (i = 0; i < MP_SIZE; i++) {
if (x->fraction[i] == y->fraction[i])
continue;
if (x->fraction[i] > y->fraction[i])
return x->sign;
else
return -x->sign;
}
/* x = y */
return 0;
}
void
mp_divide(const MPNumber *x, const MPNumber *y, MPNumber *z)
{
int i, ie;
MPNumber t;
/* x/0 */
if (mp_is_zero(y)) {
/* Translators: Error displayed attempted to divide by zero */
mperr(_("Division by zero is undefined"));
mp_set_from_integer(0, z);
return;
}
/* 0/y = 0 */
if (mp_is_zero(x)) {
mp_set_from_integer(0, z);
return;
}
/* z = x × y⁻¹ */
/* FIXME: Set exponent to zero to avoid overflow in mp_multiply??? */
mp_reciprocal(y, &t);
ie = t.exponent;
t.exponent = 0;
i = t.fraction[0];
mp_multiply(x, &t, z);
mp_ext(i, z->fraction[0], z);
z->exponent += ie;
}
static void
mp_divide_integer_real(const MPNumber *x, int64_t y, MPNumber *z)
{
int c, i, k, b2, c2, j1, j2;
MPNumber x_copy;
/* x/0 */
if (y == 0) {
/* Translators: Error displayed attempted to divide by zero */
mperr(_("Division by zero is undefined"));
mp_set_from_integer(0, z);
return;
}
/* 0/y = 0 */
if (mp_is_zero(x)) {
mp_set_from_integer(0, z);
return;
}
/* Division by -1 or 1 just changes sign */
if (y == 1 || y == -1) {
if (y < 0)
mp_invert_sign(x, z);
else
mp_set_from_mp(x, z);
return;
}
/* Copy x as z may also refer to x */
mp_set_from_mp(x, &x_copy);
mp_set_from_integer(0, z);
if (y < 0) {
y = -y;
z->sign = -x_copy.sign;
}
else
z->sign = x_copy.sign;
z->exponent = x_copy.exponent;
c = 0;
i = 0;
/* IF y*B NOT REPRESENTABLE AS AN INTEGER HAVE TO SIMULATE
* LONG DIVISION. ASSUME AT LEAST 16-BIT WORD.
*/
/* Computing MAX */
b2 = max(MP_BASE << 3, 32767 / MP_BASE);
if (y < b2) {
int kh, r1;
/* LOOK FOR FIRST NONZERO DIGIT IN QUOTIENT */
do {
c = MP_BASE * c;
if (i < MP_T)
c += x_copy.fraction[i];
i++;
r1 = c / y;
if (r1 < 0)
goto L210;
} while (r1 == 0);
/* ADJUST EXPONENT AND GET T+4 DIGITS IN QUOTIENT */
z->exponent += 1 - i;
z->fraction[0] = r1;
c = MP_BASE * (c - y * r1);
kh = 1;
if (i < MP_T) {
kh = MP_T + 1 - i;
for (k = 1; k < kh; k++) {
c += x_copy.fraction[i];
z->fraction[k] = c / y;
c = MP_BASE * (c - y * z->fraction[k]);
i++;
}
if (c < 0)
goto L210;
}
for (k = kh; k < MP_T + 4; k++) {
z->fraction[k] = c / y;
c = MP_BASE * (c - y * z->fraction[k]);
}
if (c < 0)
goto L210;
mp_normalize(z);
return;
}
/* HERE NEED SIMULATED DOUBLE-PRECISION DIVISION */
j1 = y / MP_BASE;
j2 = y - j1 * MP_BASE;
/* LOOK FOR FIRST NONZERO DIGIT */
c2 = 0;
do {
c = MP_BASE * c + c2;
c2 = i < MP_T ? x_copy.fraction[i] : 0;
i++;
} while (c < j1 || (c == j1 && c2 < j2));
/* COMPUTE T+4 QUOTIENT DIGITS */
z->exponent += 1 - i;
i--;
/* MAIN LOOP FOR LARGE ABS(y) CASE */
for (k = 1; k <= MP_T + 4; k++) {
int ir, iq, iqj;
/* GET APPROXICAFE QUOTIENT FIRST */
ir = c / (j1 + 1);
/* NOW REDUCE SO OVERFLOW DOES NOT OCCUR */
iq = c - ir * j1;
if (iq >= b2) {
/* HERE IQ*B WOULD POSSIBLY OVERFLOW SO INCREASE IR */
++ir;
iq -= j1;
}
iq = iq * MP_BASE - ir * j2;
if (iq < 0) {
/* HERE IQ NEGATIVE SO IR WAS TOO LARGE */
ir--;
iq += y;
}
if (i < MP_T)
iq += x_copy.fraction[i];
i++;
iqj = iq / y;
/* R(K) = QUOTIENT, C = REMAINDER */
z->fraction[k - 1] = iqj + ir;
c = iq - y * iqj;
if (c < 0)
goto L210;
}
mp_normalize(z);
L210:
/* CARRY NEGATIVE SO OVERFLOW MUST HAVE OCCURRED */
mperr("*** INTEGER OVERFLOW IN MP_DIVIDE_INTEGER, B TOO LARGE ***");
mp_set_from_integer(0, z);
}
void
mp_divide_integer(const MPNumber *x, int64_t y, MPNumber *z)
{
if (mp_is_complex(x)) {
MPNumber re_z, im_z;
mp_real_component(x, &re_z);
mp_imaginary_component(x, &im_z);
mp_divide_integer_real(&re_z, y, &re_z);
mp_divide_integer_real(&im_z, y, &im_z);
mp_set_from_complex(&re_z, &im_z, z);
}
else
mp_divide_integer_real(x, y, z);
}
bool
mp_is_integer(const MPNumber *x)
{
MPNumber t1, t2, t3;
if (mp_is_complex(x))
return false;
/* This fix is required for 1/3 repiprocal not being detected as an integer */
/* Multiplication and division by 10000 is used to get around a
* limitation to the "fix" for Sun bugtraq bug #4006391 in the
* mp_floor() routine in mp.c, when the exponent is less than 1.
*/
mp_set_from_integer(10000, &t3);
mp_multiply(x, &t3, &t1);
mp_divide(&t1, &t3, &t1);
mp_floor(&t1, &t2);
return mp_is_equal(&t1, &t2);
/* Correct way to check for integer */
/*int i;
// Zero is an integer
if (mp_is_zero(x))
return true;
// Fractional
if (x->exponent <= 0)
return false;
// Look for fractional components
for (i = x->exponent; i < MP_SIZE; i++) {
if (x->fraction[i] != 0)
return false;
}
return true;*/
}
bool
mp_is_positive_integer(const MPNumber *x)
{
if (mp_is_complex(x))
return false;
else
return x->sign >= 0 && mp_is_integer(x);
}
bool
mp_is_natural(const MPNumber *x)
{
if (mp_is_complex(x))
return false;
else
return x->sign > 0 && mp_is_integer(x);
}
bool
mp_is_complex(const MPNumber *x)
{
return x->im_sign != 0;
}
bool
mp_is_equal(const MPNumber *x, const MPNumber *y)
{
return mp_compare_mp_to_mp(x, y) == 0;
}
/* Return e^x for |x| < 1 USING AN O(SQRT(T).M(T)) ALGORITHM
* DESCRIBED IN - R. P. BRENT, THE COMPLEXITY OF MULTIPLE-
* PRECISION ARITHMETIC (IN COMPLEXITY OF COMPUTATIONAL PROBLEM
* SOLVING, UNIV. OF QUEENSLAND PRESS, BRISBANE, 1976, 126-165).
* ASYMPTOTICALLY FASTER METHODS EXIST, BUT ARE NOT USEFUL
* UNLESS T IS VERY LARGE. SEE COMMENTS TO MP_ATAN AND MPPIGL.
*/
static void
mp_exp(const MPNumber *x, MPNumber *z)
{
int i, q;
float rlb;
MPNumber t1, t2;
/* e^0 = 1 */
if (mp_is_zero(x)) {
mp_set_from_integer(1, z);
return;
}
/* Only defined for |x| < 1 */
if (x->exponent > 0) {
mperr("*** ABS(X) NOT LESS THAN 1 IN CALL TO MP_EXP ***");
mp_set_from_integer(0, z);
return;
}
mp_set_from_mp(x, &t1);
rlb = log((float)MP_BASE);
/* Compute approxicafely optimal q (and divide x by 2^q) */
q = (int)(sqrt((float)MP_T * 0.48f * rlb) + (float) x->exponent * 1.44f * rlb);
/* HALVE Q TIMES */
if (q > 0) {
int ib, ic;
ib = MP_BASE << 2;
ic = 1;
for (i = 1; i <= q; ++i) {
ic *= 2;
if (ic < ib && ic != MP_BASE && i < q)
continue;
mp_divide_integer(&t1, ic, &t1);
ic = 1;
}
}
if (mp_is_zero(&t1)) {
mp_set_from_integer(0, z);
return;
}
/* Sum series, reducing t where possible */
mp_set_from_mp(&t1, z);
mp_set_from_mp(&t1, &t2);
for (i = 2; MP_T + t2.exponent - z->exponent > 0; i++) {
mp_multiply(&t1, &t2, &t2);
mp_divide_integer(&t2, i, &t2);
mp_add(&t2, z, z);
if (mp_is_zero(&t2))
break;
}
/* Apply (x+1)^2 - 1 = x(2 + x) for q iterations */
for (i = 1; i <= q; ++i) {
mp_add_integer(z, 2, &t1);
mp_multiply(&t1, z, z);
}
mp_add_integer(z, 1, z);
}
static void
mp_epowy_real(const MPNumber *x, MPNumber *z)
{
float r__1;
int i, ix, xs, tss;
float rx, rz;
MPNumber t1, t2;
/* e^0 = 1 */
if (mp_is_zero(x)) {
mp_set_from_integer(1, z);
return;
}
/* If |x| < 1 use mp_exp */
if (x->exponent <= 0) {
mp_exp(x, z);
return;
}
/* NOW SAFE TO CONVERT X TO REAL */
rx = mp_cast_to_float(x);
/* SAVE SIGN AND WORK WITH ABS(X) */
xs = x->sign;
mp_abs(x, &t2);
/* GET FRACTIONAL AND INTEGER PARTS OF ABS(X) */
ix = mp_cast_to_int(&t2);
mp_fractional_component(&t2, &t2);
/* ATTACH SIGN TO FRACTIONAL PART AND COMPUTE EXP OF IT */
t2.sign *= xs;
mp_exp(&t2, z);
/* COMPUTE E-2 OR 1/E USING TWO EXTRA DIGITS IN CASE ABS(X) LARGE
* (BUT ONLY ONE EXTRA DIGIT IF T < 4)
*/
if (MP_T < 4)
tss = MP_T + 1;
else
tss = MP_T + 2;
/* LOOP FOR E COMPUTATION. DECREASE T IF POSSIBLE. */
/* Computing MIN */
mp_set_from_integer(xs, &t1);
t2.sign = 0;
for (i = 2 ; ; i++) {
if (min(tss, tss + 2 + t1.exponent) <= 2)
break;
mp_divide_integer(&t1, i * xs, &t1);
mp_add(&t2, &t1, &t2);
if (mp_is_zero(&t1))
break;
}
/* RAISE E OR 1/E TO POWER IX */
if (xs > 0)
mp_add_integer(&t2, 2, &t2);
mp_xpowy_integer(&t2, ix, &t2);
/* MULTIPLY EXPS OF INTEGER AND FRACTIONAL PARTS */
mp_multiply(z, &t2, z);
/* CHECK THAT RELATIVE ERROR LESS THAN 0.01 UNLESS ABS(X) LARGE
* (WHEN EXP MIGHT OVERFLOW OR UNDERFLOW)
*/
if (fabs(rx) > 10.0f)
return;
rz = mp_cast_to_float(z);
r__1 = rz - exp(rx);
if (fabs(r__1) < rz * 0.01f)
return;
/* THE FOLLOWING MESSAGE MAY INDICATE THAT
* B**(T-1) IS TOO SMALL, OR THAT M IS TOO SMALL SO THE
* RESULT UNDERFLOWED.
*/
mperr("*** ERROR OCCURRED IN MP_EPOWY, RESULT INCORRECT ***");
}
void
mp_epowy(const MPNumber *x, MPNumber *z)
{
/* e^0 = 1 */
if (mp_is_zero(x)) {
mp_set_from_integer(1, z);
return;
}
if (mp_is_complex(x)) {
MPNumber x_real, r, theta;
mp_real_component(x, &x_real);
mp_imaginary_component(x, &theta);
mp_epowy_real(&x_real, &r);
mp_set_from_polar(&r, MP_RADIANS, &theta, z);
}
else
mp_epowy_real(x, z);
}
/* RETURNS K = K/GCD AND L = L/GCD, WHERE GCD IS THE
* GREATEST COMMON DIVISOR OF K AND L.
* SAVE INPUT PARAMETERS IN LOCAL VARIABLES
*/
void
mp_gcd(int64_t *k, int64_t *l)
{
int64_t i, j;
i = abs(*k);
j = abs(*l);
if (j == 0) {
/* IF J = 0 RETURN (1, 0) UNLESS I = 0, THEN (0, 0) */
*k = 1;
*l = 0;
if (i == 0)
*k = 0;
return;
}
/* EUCLIDEAN ALGORITHM LOOP */
do {
i %= j;
if (i == 0) {
*k = *k / j;
*l = *l / j;
return;
}
j %= i;
} while (j != 0);
/* HERE J IS THE GCD OF K AND L */
*k = *k / i;
*l = *l / i;
}
bool
mp_is_zero(const MPNumber *x)
{
return x->sign == 0 && x->im_sign == 0;
}
bool
mp_is_negative(const MPNumber *x)
{
return x->sign < 0;
}
bool
mp_is_greater_equal(const MPNumber *x, const MPNumber *y)
{
return mp_compare_mp_to_mp(x, y) >= 0;
}
bool
mp_is_greater_than(const MPNumber *x, const MPNumber *y)
{
return mp_compare_mp_to_mp(x, y) > 0;
}
bool
mp_is_less_equal(const MPNumber *x, const MPNumber *y)
{
return mp_compare_mp_to_mp(x, y) <= 0;
}
/* RETURNS MP Y = LN(1+X) IF X IS AN MP NUMBER SATISFYING THE
* CONDITION ABS(X) < 1/B, ERROR OTHERWISE.
* USES NEWTONS METHOD TO SOLVE THE EQUATION
* EXP1(-Y) = X, THEN REVERSES SIGN OF Y.
*/
static void
mp_lns(const MPNumber *x, MPNumber *z)
{
int t, it0;
MPNumber t1, t2, t3;
/* ln(1+0) = 0 */
if (mp_is_zero(x)) {
mp_set_from_integer(0, z);
return;
}
/* Get starting approximation -ln(1+x) ~= -x + x^2/2 - x^3/3 + x^4/4 */
mp_set_from_mp(x, &t2);
mp_divide_integer(x, 4, &t1);
mp_add_fraction(&t1, -1, 3, &t1);
mp_multiply(x, &t1, &t1);
mp_add_fraction(&t1, 1, 2, &t1);
mp_multiply(x, &t1, &t1);
mp_add_integer(&t1, -1, &t1);
mp_multiply(x, &t1, z);
/* Solve using Newtons method */
it0 = t = 5;
while(1)
{
int ts2, ts3;
/* t3 = (e^t3 - 1) */
/* z = z - (t2 + t3 + (t2 * t3)) */
mp_epowy(z, &t3);
mp_add_integer(&t3, -1, &t3);
mp_multiply(&t2, &t3, &t1);
mp_add(&t3, &t1, &t3);
mp_add(&t2, &t3, &t3);
mp_subtract(z, &t3, z);
if (t >= MP_T)
break;
/* FOLLOWING LOOP COMPUTES NEXT VALUE OF T TO USE.
* BECAUSE NEWTONS METHOD HAS 2ND ORDER CONVERGENCE,
* WE CAN ALMOST DOUBLE T EACH TIME.
*/
ts3 = t;
t = MP_T;
do {
ts2 = t;
t = (t + it0) / 2;
} while (t > ts3);
t = ts2;
}
/* CHECK THAT NEWTON ITERATION WAS CONVERGING AS EXPECTED */
if (t3.sign != 0 && t3.exponent << 1 > it0 - MP_T) {
mperr("*** ERROR OCCURRED IN MP_LNS, NEWTON ITERATION NOT CONVERGING PROPERLY ***");
}
z->sign = -z->sign;
}
static void
mp_ln_real(const MPNumber *x, MPNumber *z)
{
int e, k;<--- The scope of the variable 'e' can be reduced. [+]The scope of the variable 'e' can be reduced. Warning: Be careful when fixing this message, especially when there are inner loops. Here is an example where cppcheck will write that the scope for 'i' can be reduced:
void f(int x)
{
int i = 0;
if (x) {
// it's safe to move 'int i = 0;' here
for (int n = 0; n < 10; ++n) {
// it is possible but not safe to move 'int i = 0;' here
do_something(&i);
}
}
}
When you see this message it is always safe to reduce the variable scope 1 level.
double rx, rlx;<--- The scope of the variable 'rx' can be reduced. [+]The scope of the variable 'rx' can be reduced. Warning: Be careful when fixing this message, especially when there are inner loops. Here is an example where cppcheck will write that the scope for 'i' can be reduced:
void f(int x)
{
int i = 0;
if (x) {
// it's safe to move 'int i = 0;' here
for (int n = 0; n < 10; ++n) {
// it is possible but not safe to move 'int i = 0;' here
do_something(&i);
}
}
}
When you see this message it is always safe to reduce the variable scope 1 level. <--- The scope of the variable 'rlx' can be reduced. [+]The scope of the variable 'rlx' can be reduced. Warning: Be careful when fixing this message, especially when there are inner loops. Here is an example where cppcheck will write that the scope for 'i' can be reduced:
void f(int x)
{
int i = 0;
if (x) {
// it's safe to move 'int i = 0;' here
for (int n = 0; n < 10; ++n) {
// it is possible but not safe to move 'int i = 0;' here
do_something(&i);
}
}
}
When you see this message it is always safe to reduce the variable scope 1 level.
MPNumber t1, t2;
/* LOOP TO GET APPROXICAFE LN(X) USING SINGLE-PRECISION */
mp_set_from_mp(x, &t1);
mp_set_from_integer(0, z);
for(k = 0; k < 10; k++)
{
/* COMPUTE FINAL CORRECTION ACCURATELY USING MP_LNS */
mp_add_integer(&t1, -1, &t2);
if (mp_is_zero(&t2) || t2.exponent + 1 <= 0) {
mp_lns(&t2, &t2);
mp_add(z, &t2, z);
return;
}
/* REMOVE EXPONENT TO AVOID FLOATING-POINT OVERFLOW */
e = t1.exponent;
t1.exponent = 0;
rx = mp_cast_to_double(&t1);
t1.exponent = e;
rlx = log(rx) + e * log(MP_BASE);
mp_set_from_double(-(double)rlx, &t2);
/* UPDATE Z AND COMPUTE ACCURATE EXP OF APPROXICAFE LOG */
mp_subtract(z, &t2, z);
mp_epowy(&t2, &t2);
/* COMPUTE RESIDUAL WHOSE LOG IS STILL TO BE FOUND */
mp_multiply(&t1, &t2, &t1);
}
mperr("*** ERROR IN MP_LN, ITERATION NOT CONVERGING ***");
}
void
mp_ln(const MPNumber *x, MPNumber *z)
{
/* ln(0) undefined */
if (mp_is_zero(x)) {
/* Translators: Error displayed when attempting to take logarithm of zero */
mperr(_("Logarithm of zero is undefined"));
mp_set_from_integer(0, z);
return;
}
/* ln(-x) complex */
/* FIXME: Make complex numbers optional */
/*if (mp_is_negative(x)) {
// Translators: Error displayed attempted to take logarithm of negative value
mperr(_("Logarithm of negative values is undefined"));
mp_set_from_integer(0, z);
return;
}*/
if (mp_is_complex(x) || mp_is_negative(x)) {
MPNumber r, theta, z_real;
/* ln(re^iθ) = e^(ln(r)+iθ) */
mp_abs(x, &r);
mp_arg(x, MP_RADIANS, &theta);
mp_ln_real(&r, &z_real);
mp_set_from_complex(&z_real, &theta, z);
}
else
mp_ln_real(x, z);
}
void
mp_logarithm(int64_t n, const MPNumber *x, MPNumber *z)
{
MPNumber t1, t2;
/* log(0) undefined */
if (mp_is_zero(x)) {
/* Translators: Error displayed when attempting to take logarithm of zero */
mperr(_("Logarithm of zero is undefined"));
mp_set_from_integer(0, z);
return;
}
/* logn(x) = ln(x) / ln(n) */
mp_set_from_integer(n, &t1);
mp_ln(&t1, &t1);
mp_ln(x, &t2);
mp_divide(&t2, &t1, z);
}
bool
mp_is_less_than(const MPNumber *x, const MPNumber *y)
{
return mp_compare_mp_to_mp(x, y) < 0;
}
static void
mp_multiply_real(const MPNumber *x, const MPNumber *y, MPNumber *z)
{
int c, i, xi;
MPNumber r;
/* x*0 = 0*y = 0 */
if (x->sign == 0 || y->sign == 0) {
mp_set_from_integer(0, z);
return;
}
z->sign = x->sign * y->sign;
z->exponent = x->exponent + y->exponent;
memset(&r, 0, sizeof(MPNumber));
/* PERFORM MULTIPLICATION */
c = 8;
for (i = 0; i < MP_T; i++) {
int j;
xi = x->fraction[i];
/* FOR SPEED, PUT THE NUMBER WITH MANY ZEROS FIRST */
if (xi == 0)
continue;
/* Computing MIN */
for (j = 0; j < min(MP_T, MP_T + 3 - i); j++)
r.fraction[i+j+1] += xi * y->fraction[j];
c--;
if (c > 0)
continue;
/* CHECK FOR LEGAL BASE B DIGIT */
if (xi < 0 || xi >= MP_BASE) {
mperr("*** ILLEGAL BASE B DIGIT IN CALL TO MP_MULTIPLY, POSSIBLE OVERWRITING PROBLEM ***");
mp_set_from_integer(0, z);
return;
}
/* PROPAGATE CARRIES AT END AND EVERY EIGHTH TIME,
* FASTER THAN DOING IT EVERY TIME.
*/
for (j = MP_T + 3; j >= 0; j--) {
int ri = r.fraction[j] + c;
if (ri < 0) {
mperr("*** INTEGER OVERFLOW IN MP_MULTIPLY, B TOO LARGE ***");
mp_set_from_integer(0, z);
return;
}
c = ri / MP_BASE;
r.fraction[j] = ri - MP_BASE * c;
}
if (c != 0) {
mperr("*** ILLEGAL BASE B DIGIT IN CALL TO MP_MULTIPLY, POSSIBLE OVERWRITING PROBLEM ***");
mp_set_from_integer(0, z);
return;
}
c = 8;
}
if (c != 8) {
if (xi < 0 || xi >= MP_BASE) {
mperr("*** ILLEGAL BASE B DIGIT IN CALL TO MP_MULTIPLY, POSSIBLE OVERWRITING PROBLEM ***");
mp_set_from_integer(0, z);
return;
}
c = 0;
for (i = MP_T + 3; i >= 0; i--) {
int ri = r.fraction[i] + c;
if (ri < 0) {
mperr("*** INTEGER OVERFLOW IN MP_MULTIPLY, B TOO LARGE ***");
mp_set_from_integer(0, z);
return;
}
c = ri / MP_BASE;
r.fraction[i] = ri - MP_BASE * c;
}
if (c != 0) {
mperr("*** ILLEGAL BASE B DIGIT IN CALL TO MP_MULTIPLY, POSSIBLE OVERWRITING PROBLEM ***");
mp_set_from_integer(0, z);
return;
}
}
/* Clear complex part */
z->im_sign = 0;
z->im_exponent = 0;
memset(z->im_fraction, 0, sizeof(int) * MP_SIZE);
/* NORMALIZE AND ROUND RESULT */
// FIXME: Use stack variable because of mp_normalize brokeness
for (i = 0; i < MP_SIZE; i++)
z->fraction[i] = r.fraction[i];
mp_normalize(z);
}
void
mp_multiply(const MPNumber *x, const MPNumber *y, MPNumber *z)
{
/* x*0 = 0*y = 0 */
if (mp_is_zero(x) || mp_is_zero(y)) {
mp_set_from_integer(0, z);
return;
}
/* (a+bi)(c+di) = (ac-bd)+(ad+bc)i */
if (mp_is_complex(x) || mp_is_complex(y)) {
MPNumber real_x, real_y, im_x, im_y, t1, t2, real_z, im_z;
mp_real_component(x, &real_x);
mp_imaginary_component(x, &im_x);
mp_real_component(y, &real_y);
mp_imaginary_component(y, &im_y);
mp_multiply_real(&real_x, &real_y, &t1);
mp_multiply_real(&im_x, &im_y, &t2);
mp_subtract(&t1, &t2, &real_z);
mp_multiply_real(&real_x, &im_y, &t1);
mp_multiply_real(&im_x, &real_y, &t2);
mp_add(&t1, &t2, &im_z);
mp_set_from_complex(&real_z, &im_z, z);
}
else {
mp_multiply_real(x, y, z);
}
}
static void
mp_multiply_integer_real(const MPNumber *x, int64_t y, MPNumber *z)
{
int c, i;
MPNumber x_copy;
/* x*0 = 0*y = 0 */
if (mp_is_zero(x) || y == 0) {
mp_set_from_integer(0, z);
return;
}
/* x*1 = x, x*-1 = -x */
// FIXME: Why is this not working? mp_ext is using this function to do a normalization
/*if (y == 1 || y == -1) {
if (y < 0)
mp_invert_sign(x, z);
else
mp_set_from_mp(x, z);
return;
}*/
/* Copy x as z may also refer to x */
mp_set_from_mp(x, &x_copy);
mp_set_from_integer(0, z);
if (y < 0) {
y = -y;
z->sign = -x_copy.sign;
}
else
z->sign = x_copy.sign;
z->exponent = x_copy.exponent + 4;
/* FORM PRODUCT IN ACCUMULATOR */
c = 0;
/* IF y*B NOT REPRESENTABLE AS AN INTEGER WE HAVE TO SIMULATE
* DOUBLE-PRECISION MULTIPLICATION.
*/
/* Computing MAX */
if (y >= max(MP_BASE << 3, 32767 / MP_BASE)) {
int64_t j1, j2;
/* HERE J IS TOO LARGE FOR SINGLE-PRECISION MULTIPLICATION */
j1 = y / MP_BASE;
j2 = y - j1 * MP_BASE;
/* FORM PRODUCT */
for (i = MP_T + 3; i >= 0; i--) {
int64_t c1, c2, is, ix, t;
c1 = c / MP_BASE;
c2 = c - MP_BASE * c1;
ix = 0;
if (i > 3)
ix = x_copy.fraction[i - 4];
t = j2 * ix + c2;
is = t / MP_BASE;
c = j1 * ix + c1 + is;
z->fraction[i] = t - MP_BASE * is;
}
}
else
{
int64_t ri = 0;
for (i = MP_T + 3; i >= 4; i--) {
ri = y * x_copy.fraction[i - 4] + c;
c = ri / MP_BASE;
z->fraction[i] = ri - MP_BASE * c;
}
/* CHECK FOR INTEGER OVERFLOW */
if (ri < 0) {
mperr("*** INTEGER OVERFLOW IN mp_multiply_integer, B TOO LARGE ***");
mp_set_from_integer(0, z);
return;
}
/* HAVE TO TREAT FIRST FOUR WORDS OF R SEPARATELY */
for (i = 3; i >= 0; i--) {
int t;
t = c;
c = t / MP_BASE;
z->fraction[i] = t - MP_BASE * c;
}
}
/* HAVE TO SHIFT RIGHT HERE AS CARRY OFF END */
while (c != 0) {<--- Assuming that condition 'c!=0' is not redundant
int64_t t;
for (i = MP_T + 3; i >= 1; i--)
z->fraction[i] = z->fraction[i - 1];
t = c;
c = t / MP_BASE;
z->fraction[0] = t - MP_BASE * c;
z->exponent++;
}
if (c < 0) {<--- Condition 'c<0' is always false
mperr("*** INTEGER OVERFLOW IN mp_multiply_integer, B TOO LARGE ***");
mp_set_from_integer(0, z);
return;
}
z->im_sign = 0;
z->im_exponent = 0;
memset(z->im_fraction, 0, sizeof(int) * MP_SIZE);
mp_normalize(z);
}
void
mp_multiply_integer(const MPNumber *x, int64_t y, MPNumber *z)
{
if (mp_is_complex(x)) {
MPNumber re_z, im_z;
mp_real_component(x, &re_z);
mp_imaginary_component(x, &im_z);
mp_multiply_integer_real(&re_z, y, &re_z);
mp_multiply_integer_real(&im_z, y, &im_z);
mp_set_from_complex(&re_z, &im_z, z);
}
else
mp_multiply_integer_real(x, y, z);
}
void
mp_multiply_fraction(const MPNumber *x, int64_t numerator, int64_t denominator, MPNumber *z)
{
if (denominator == 0) {
mperr(_("Division by zero is undefined"));
mp_set_from_integer(0, z);
return;
}
if (numerator == 0) {
mp_set_from_integer(0, z);
return;
}
/* Reduce to lowest terms */
mp_gcd(&numerator, &denominator);
mp_divide_integer(x, denominator, z);
mp_multiply_integer(z, numerator, z);
}
void
mp_invert_sign(const MPNumber *x, MPNumber *z)
{
mp_set_from_mp(x, z);
z->sign = -z->sign;
z->im_sign = -z->im_sign;
}
// FIXME: Is r->fraction large enough? It seems to be in practise but it may be MP_T+4 instead of MP_T
// FIXME: There is some sort of stack corruption/use of unitialised variables here. Some functions are
// using stack variables as x otherwise there are corruption errors. e.g. "Cos(45) - 1/Sqrt(2) = -0"
// (try in scientific mode)
void
mp_normalize(MPNumber *x)
{
int start_index;
/* Find first non-zero digit */
for (start_index = 0; start_index < MP_SIZE && x->fraction[start_index] == 0; start_index++);
/* Mark as zero */
if (start_index >= MP_SIZE) {
x->sign = 0;
x->exponent = 0;
return;
}
/* Shift left so first digit is non-zero */
if (start_index > 0) {
int i;
x->exponent -= start_index;
for (i = 0; (i + start_index) < MP_SIZE; i++)
x->fraction[i] = x->fraction[i + start_index];
for (; i < MP_SIZE; i++)
x->fraction[i] = 0;
}
}
static void
mp_pwr(const MPNumber *x, const MPNumber *y, MPNumber *z)
{
MPNumber t;
/* (-x)^y imaginary */
/* FIXME: Make complex numbers optional */
/*if (x->sign < 0) {
mperr(_("The power of negative numbers is only defined for integer exponents"));
mp_set_from_integer(0, z);
return;
}*/
/* 0^y = 0, 0^-y undefined */
if (mp_is_zero(x)) {
mp_set_from_integer(0, z);
if (y->sign < 0)
mperr(_("The power of zero is undefined for a negative exponent"));
return;
}
/* x^0 = 1 */
if (mp_is_zero(y)) {
mp_set_from_integer(1, z);
return;
}
mp_ln(x, &t);
mp_multiply(y, &t, z);
mp_epowy(z, z);
}
static void
mp_reciprocal_real(const MPNumber *x, MPNumber *z)
{
MPNumber t1, t2;
int it0, t;
/* 1/0 invalid */
if (mp_is_zero(x)) {
mperr(_("Reciprocal of zero is undefined"));
mp_set_from_integer(0, z);
return;
}
/* Start by approximating value using floating point */
mp_set_from_mp(x, &t1);
t1.exponent = 0;
mp_set_from_float(1.0f / mp_cast_to_float(&t1), &t1);
t1.exponent -= x->exponent;
it0 = t = 3;
while(1) {
int ts2, ts3;
/* t1 = t1 - (t1 * ((x * t1) - 1)) (2*t1 - t1^2*x) */
mp_multiply(x, &t1, &t2);
mp_add_integer(&t2, -1, &t2);
mp_multiply(&t1, &t2, &t2);
mp_subtract(&t1, &t2, &t1);
if (t >= MP_T)
break;
/* FOLLOWING LOOP ALMOST DOUBLES T (POSSIBLE
* BECAUSE NEWTONS METHOD HAS 2ND ORDER CONVERGENCE).
*/
ts3 = t;
t = MP_T;
do {
ts2 = t;
t = (t + it0) / 2;
} while (t > ts3);
t = min(ts2, MP_T);
}
/* RETURN IF NEWTON ITERATION WAS CONVERGING */
if (t2.sign != 0 && (t1.exponent - t2.exponent) << 1 < MP_T - it0) {
/* THE FOLLOWING MESSAGE MAY INDICATE THAT B**(T-1) IS TOO SMALL,
* OR THAT THE STARTING APPROXIMATION IS NOT ACCURATE ENOUGH.
*/
mperr("*** ERROR OCCURRED IN MP_RECIPROCAL, NEWTON ITERATION NOT CONVERGING PROPERLY ***");
}
mp_set_from_mp(&t1, z);
}
void
mp_reciprocal(const MPNumber *x, MPNumber *z)
{
if (mp_is_complex(x)) {
MPNumber t1, t2;
MPNumber real_x, im_x;
mp_real_component(x, &real_x);
mp_imaginary_component(x, &im_x);
/* 1/(a+bi) = (a-bi)/(a+bi)(a-bi) = (a-bi)/(a²+b²) */
mp_multiply(&real_x, &real_x, &t1);
mp_multiply(&im_x, &im_x, &t2);
mp_add(&t1, &t2, &t1);
mp_reciprocal_real(&t1, z);
mp_conjugate(x, &t1);
mp_multiply(&t1, z, z);
}
else
mp_reciprocal_real(x, z);
}
static void
mp_root_real(const MPNumber *x, int64_t n, MPNumber *z)
{
float approximation;
int ex, np, it0, t;
MPNumber t1, t2;
/* x^(1/1) = x */
if (n == 1) {
mp_set_from_mp(x, z);
return;
}
/* x^(1/0) invalid */
if (n == 0) {
mperr(_("Root must be non-zero"));
mp_set_from_integer(0, z);
return;
}
np = abs(n);
/* LOSS OF ACCURACY IF NP LARGE, SO ONLY ALLOW NP <= MAX (B, 64) */
if (np > max(MP_BASE, 64)) {
mperr("*** ABS(N) TOO LARGE IN CALL TO MP_ROOT ***");
mp_set_from_integer(0, z);
return;
}
/* 0^(1/n) = 0 for positive n */
if (mp_is_zero(x)) {
mp_set_from_integer(0, z);
if (n <= 0)
mperr(_("Negative root of zero is undefined"));
return;
}
// FIXME: Imaginary root
if (x->sign < 0 && np % 2 == 0) {
mperr(_("nth root of negative number is undefined for even n"));
mp_set_from_integer(0, z);
return;
}
/* DIVIDE EXPONENT BY NP */
ex = x->exponent / np;
/* Get initial approximation */
mp_set_from_mp(x, &t1);
t1.exponent = 0;
approximation = exp(((float)(np * ex - x->exponent) * log((float)MP_BASE) -
log((fabs(mp_cast_to_float(&t1))))) / (float)np);
mp_set_from_float(approximation, &t1);
t1.sign = x->sign;
t1.exponent -= ex;
/* MAIN ITERATION LOOP */
it0 = t = 3;
while(1) {
int ts2, ts3;
/* t1 = t1 - ((t1 * ((x * t1^np) - 1)) / np) */
mp_xpowy_integer(&t1, np, &t2);
mp_multiply(x, &t2, &t2);
mp_add_integer(&t2, -1, &t2);
mp_multiply(&t1, &t2, &t2);
mp_divide_integer(&t2, np, &t2);
mp_subtract(&t1, &t2, &t1);
/* FOLLOWING LOOP ALMOST DOUBLES T (POSSIBLE BECAUSE
* NEWTONS METHOD HAS 2ND ORDER CONVERGENCE).
*/
if (t >= MP_T)
break;
ts3 = t;
t = MP_T;
do {
ts2 = t;
t = (t + it0) / 2;
} while (t > ts3);
t = min(ts2, MP_T);
}
/* NOW R(I2) IS X**(-1/NP)
* CHECK THAT NEWTON ITERATION WAS CONVERGING
*/
if (t2.sign != 0 && (t1.exponent - t2.exponent) << 1 < MP_T - it0) {
/* THE FOLLOWING MESSAGE MAY INDICATE THAT B**(T-1) IS TOO SMALL,
* OR THAT THE INITIAL APPROXIMATION OBTAINED USING ALOG AND EXP
* IS NOT ACCURATE ENOUGH.
*/
mperr("*** ERROR OCCURRED IN MP_ROOT, NEWTON ITERATION NOT CONVERGING PROPERLY ***");
}
if (n >= 0) {
mp_xpowy_integer(&t1, n - 1, &t1);
mp_multiply(x, &t1, z);
return;
}
mp_set_from_mp(&t1, z);
}
void
mp_root(const MPNumber *x, int64_t n, MPNumber *z)
{
if (!mp_is_complex(x) && mp_is_negative(x) && n % 2 == 1) {
mp_abs(x, z);
mp_root_real(z, n, z);
mp_invert_sign(z, z);
}
else if (mp_is_complex(x) || mp_is_negative(x)) {
MPNumber r, theta;
mp_abs(x, &r);
mp_arg(x, MP_RADIANS, &theta);
mp_root_real(&r, n, &r);
mp_divide_integer(&theta, n, &theta);
mp_set_from_polar(&r, MP_RADIANS, &theta, z);
}
else
mp_root_real(x, n, z);
}
void
mp_sqrt(const MPNumber *x, MPNumber *z)
{
if (mp_is_zero(x))
mp_set_from_integer(0, z);
/* FIXME: Make complex numbers optional */
/*else if (x->sign < 0) {
mperr(_("Square root is undefined for negative values"));
mp_set_from_integer(0, z);
}*/
else {
MPNumber t;
mp_root(x, -2, &t);
mp_multiply(x, &t, z);
mp_ext(t.fraction[0], z->fraction[0], z);
}
}
void
mp_factorial(const MPNumber *x, MPNumber *z)
{
int i, value;
/* 0! == 1 */
if (mp_is_zero(x)) {
mp_set_from_integer(1, z);
return;
}
if (!mp_is_natural(x)) {
/* Translators: Error displayed when attempted take the factorial of a fractional number */
mperr(_("Factorial is only defined for natural numbers"));
mp_set_from_integer(0, z);
return;
}
/* Convert to integer - if couldn't be converted then the factorial would be too big anyway */
value = mp_cast_to_int(x);
mp_set_from_mp(x, z);
for (i = 2; i < value; i++)
mp_multiply_integer(z, i, z);
}
void
mp_modulus_divide(const MPNumber *x, const MPNumber *y, MPNumber *z)
{
MPNumber t1, t2;
if (!mp_is_integer(x) || !mp_is_integer(y)) {
/* Translators: Error displayed when attemping to do a modulus division on non-integer numbers */
mperr(_("Modulus division is only defined for integers"));
mp_set_from_integer(0, z);
}
mp_divide(x, y, &t1);
mp_floor(&t1, &t1);
mp_multiply(&t1, y, &t2);
mp_subtract(x, &t2, z);
mp_set_from_integer(0, &t1);
if ((mp_is_less_than(y, &t1) && mp_is_greater_than(z, &t1)) || mp_is_less_than(z, &t1))
mp_add(z, y, z);
}
void
mp_xpowy(const MPNumber *x, const MPNumber *y, MPNumber *z)
{
if (mp_is_integer(y)) {
mp_xpowy_integer(x, mp_cast_to_int(y), z);
} else {
MPNumber reciprocal;
mp_reciprocal(y, &reciprocal);
if (mp_is_integer(&reciprocal))
mp_root(x, mp_cast_to_int(&reciprocal), z);
else
mp_pwr(x, y, z);
}
}
void
mp_xpowy_integer(const MPNumber *x, int64_t n, MPNumber *z)
{
int i;
MPNumber t;
/* 0^-n invalid */
if (mp_is_zero(x) && n < 0) {
/* Translators: Error displayed when attempted to raise 0 to a negative exponent */
mperr(_("The power of zero is undefined for a negative exponent"));
mp_set_from_integer(0, z);
return;
}
/* x^0 = 1 */
if (n == 0) {
mp_set_from_integer(1, z);
return;
}
/* 0^n = 0 */
if (mp_is_zero(x)) {
mp_set_from_integer(0, z);
return;
}
/* x^1 = x */
if (n == 1) {
mp_set_from_mp(x, z);
return;
}
if (n < 0) {
mp_reciprocal(x, &t);
n = -n;
}
else
mp_set_from_mp(x, &t);
/* Multply x n times */
// FIXME: Can do mp_multiply(z, z, z) until close to answer (each call doubles number of multiples) */
mp_set_from_integer(1, z);
for (i = 0; i < n; i++)
mp_multiply(z, &t, z);
}
GList*
mp_factorize(const MPNumber *x)
{
GList *list = NULL;
MPNumber *factor = g_slice_alloc0(sizeof(MPNumber));
MPNumber value, tmp, divisor, root;
mp_abs(x, &value);
if (mp_is_zero(&value)) {
mp_set_from_mp(&value, factor);
list = g_list_append(list, factor);
return list;
}
mp_set_from_integer(1, &tmp);
if (mp_is_equal(&value, &tmp)) {
mp_set_from_mp(x, factor);
list = g_list_append(list, factor);
return list;
}
mp_set_from_integer(2, &divisor);
while (TRUE) {
mp_divide(&value, &divisor, &tmp);
if (mp_is_integer(&tmp)) {
value = tmp;
mp_set_from_mp(&divisor, factor);
list = g_list_append(list, factor);
factor = g_slice_alloc0(sizeof(MPNumber));
} else {
break;
}
}
mp_set_from_integer(3, &divisor);
mp_sqrt(&value, &root);
while (mp_is_less_equal(&divisor, &root)) {
mp_divide(&value, &divisor, &tmp);
if (mp_is_integer(&tmp)) {
value = tmp;
mp_sqrt(&value, &root);
mp_set_from_mp(&divisor, factor);
list = g_list_append(list, factor);
factor = g_slice_alloc0(sizeof(MPNumber));
} else {
mp_add_integer(&divisor, 2, &tmp);
divisor = tmp;
}
}
mp_set_from_integer(1, &tmp);
if (mp_is_greater_than(&value, &tmp)) {
mp_set_from_mp(&value, factor);
list = g_list_append(list, factor);
} else {
g_slice_free(MPNumber, factor);
}
if (mp_is_negative(x)) {
mp_invert_sign(list->data, list->data);
}
return list;
}
|